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Measure of orbital stickiness and chaos strength
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Patterns can be used effectively to characterize dynamical orbits as regular or chaotic. The proposed method
focuses on local, epochal characterization of orbits as opposed to global characterization usually employed by
most established measures. The “patterns method” provides essentially a measure of chaos strength for every
extremum of a signal. For this reason, it provides information about sticky epochs of chaotic orbits, as well as
time-dependent orbits. This way it can be used to give extremely detailed pictures of the phase space of a
system, as well as to provide characterizations early in the evolution of orbits. Moreover, the method applies
generally; all that is required is a signal, of which an orbit is merely an example.
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I. INTRODUCTION

The characterization of orbits as regular or chaotic has
been a problem addressed by a number of investigators. The
historically favored method is the calculation of Lyapunov
exponents [ 1-3]. They quantify the local instability of orbits,
thus they connect directly to sensitivity of initial conditions.
This measure is both well justified and well established, and
usually stands as the first approach to characterize the nature
of orbits. In this spirit, several researchers have conceived
more sophisticated methods, based on convergence of mea-
sures associated with the orbital evolution. Typical examples
are the fast Lyapunov exponents [4], the helicity angles [5],
the smaller alignment index method [6], as well as a new
method associated with time averages related to the virial
theorem [7]. These new measures are more efficient than the
traditional Lyapunov exponents, since they typically con-
verge faster.

Another class of measures relies on information derived
by frequency analysis of orbits. For example, a Fourier spec-
trum provides a picture of the number and strength of fre-
quencies associated with an orbit. Intuitively one expects, the
more the frequencies with sizable power, the more compli-
cated the orbit should look. Bigger complexity of the spec-
trum should imply bigger chaoticity [8]. Chaotic orbits are
inherently more complex than regular: theoretically, they are
characterized by continuous spectra, while regular orbits are
characterized by discrete ones. Measures such as “complex-
ity,” which use information provided by the Fourier spectra
of orbits, correlate linearly with the largest Lyapunov expo-
nents [8,9]. In this context, more sophisticated measures
have been developed [10]. Undoubtedly, they have been
proven valuable in a number of different fields: celestial me-
chanics, galactic dynamics, and charged-particle-beam phys-
ics are only a few examples.

There are of course other measures not based on either of
these two basic ideas: Kolmogorov-Sinai entropy [3] is the
most typical example.

There have always been two main concerns related to
chaotic measures: (a) how accurate the characterization is
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and (b) how fast it is, i.e., how long should one evolve an
orbit to get a reliable characterization. For time-independent
regimes (where energy is conserved, therefore regular orbits
remain always regular, and chaotic orbits remain always cha-
otic during their evolution), the longer the evolution time, the
more accurate the characterization. However, the shortest
evolution time sufficient to claim the status of an orbit differs
among measures. The traditional Lyapunov exponents may
need hundreds, or even thousands, of orbital periods to con-
verge. (To avoid confusion, the term “orbital period” is used
as equivalent to one “orbital revolution,” or one “dynamical
time,” and these terms will alternate in this paper.) The most
sophisticated measures today claim to have lowered this
limit to about 30 orbital periods, but this may depend signifi-
cantly on both the chosen model and the specific orbit.

There are two major questions emerging: Firstly, is it pos-
sible to do better than 30 orbital periods? In some contexts,
the life of systems is very short; researchers do not always
have the luxury of long evolution times. Secondly, is it pos-
sible to analyze time-dependent systems? In a time-
dependent regime, energy is not conserved, and orbits essen-
tially experience a different potential at every different
moment. As a result they can experience both regular and
chaotic epochs, a phenomenon known as transient or inter-
mittent chaos [11]. Dissecting orbits with the aforementioned
established measures to detect short-lived chaotic or regular
epochs, is either impossible by design, or at least not effec-
tive.

There is an additional problem, potentially important. The
current methods provide little or no information about the
sticky epochs of chaotic orbits [12—14]. It is well known that
chaotic orbits, if allowed to evolve long enough, cover
densely all the phase space energetically available to them.
Occasionally, they get trapped for long times in confined
regions of the phase space, usually located around regular
islands. Physically, this entrapment is caused by the exis-
tence of dynamical obstacles in the phase space: cantori (po-
rous tori) in two-dimensional systems, or Arnol’d webs in
systems of higher dimensionality. Being trapped in these re-
gions, they attempt to behave like regular orbits. Therefore,
“stickiness” may have important physical significance in
contexts such as galaxies [15], where the extent of the sticky
zones may be a legitimate concern. Then, obvious questions
emerge: Is it possible to contrive a method which clearly
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identifies the sticky epochs of chaotic orbits? Most impor-
tantly, is it feasible to quantify the strength of chaos at dif-
ferent locations and belts of the chaotic sea? And do all the
sticky regions have the same physical properties?

When a perturbation (the size of which is governed by a
nonlinearity parameter k) is introduced into integrable sys-
tems, KAM theorem predicts that the invariant curves asso-
ciated with irrational frequencies will deform but survive for
finite values of k. When it exceeds a critical value k, the
invariant curves (two degrees of freedom) develop gaps, and
transform into Cantor sets. MacKay et al. [16] associated the
probability transition through cantori with a local flux coef-
ficient AW in a Markovian model. The transport is essen-
tially determined by the low-flux cantori but a detailed treat-
ment needs all the cantori and the hierarchies of islands
around islands to be taken into account. Meiss and Ott [17]
discussed the role of this hierarchy and suggested an elegant
model of transport based on Markovian trees (also Ref. [18]).
The idea was that the orbit is bouncing for a long time be-
tween low-flux cantori, following essentially a random walk.
The transport coefficient computed following this model was
comparable to the coefficient computed numerically in other
works [19,20]. In more than two dimensions, tori do not
partition the energy space into independent parts, the picture
is replaced by Arnol’d web, and the chaotic space is inter-
connected.

Summarizing, chaotic orbits evolving in time-independent
potentials experience a number of different epochs during
their evolution. They move through different complexity lev-
els, from extremely sticky, when they are very close to regu-
lar islands, to wildly chaotic, when they are far from islands
and well into the chaotic sea. The same is true for orbits
moving in time-dependent potentials, but now since the en-
ergy is not conserved, orbits may jump from regularity to
chaos and vice versa [21-23]. The main concern of most of
the popular measures of chaos is distinction between chaos
and regularity (one pronounced exception is Laskar’s method
which will be discussed shortly). This is a type of global
characterization of an orbit or signal. Undoubtedly this is the
most important point, but one may ask how the strength of
chaos changes during the evolution of an orbit. Such infor-
mation could be critical for analyzing effectively the diffu-
sion of a chaotic orbit and the strength of the chaotic zones
in time-independent potentials, as well as transitions from
regularity to chaos (and vice versa) in time-dependent poten-
tials. A measure which focuses on epochal (local) chaos
strength would be a significant addition to the already existed
measures.

The new measure (patterns method), presented in this pa-
per, attempts to resolve the aforementioned issues. It treats a
signal (or orbit) not as one entity but as a series of distinct
epochs. In this sense, it focuses on local, epochal character-
izations, instead of the usual approach of global character-
izations. In the pictures of the phase space not only belts of
stickiness are identified, but also different levels of stickiness
are quantified. Pictures of the phase space can be made, in-
cluding essential details, even with just ten orbital periods.
Moreover, this measure should apply without any change in
its logic or design to time-dependent systems. Here we focus
on two-dimensional time-independent systems; work on
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more dimensions and time-dependent systems will be pre-
sented in future papers.

An important question is how the patterns method com-
pares to Laskar’s frequency map analysis method. This
method is an excellent indicator of global dynamics and is
based on an iterative scheme which determines the frequen-
cies associated with the motion, orders of magnitude more
accurately than a typical fast Fourier transform method [25].
It was first devised to analyze the stability of orbits in the
solar system [10], but since then it has also been applied
successfully to different contexts, such as galactic dynamics
[26] and accelerator physics [27]. Accurate determination of
the frequency vector of an orbit is where Laskar’s method
has excelled, and since the patterns method is not based on
frequency analysis it would be meaningless to compare the
two methods in this context.

Where the patterns method can improve on Laskar’s
method is on the information regarding the diffusive history
of chaotic orbits. In this case Laskar’s scheme computes the
frequency vector v; of the orbit in a time-span [#,7+T]. This
way one can follow the time evolution of frequency vector
v;(¢). Tt is important to notice that v;(¢) is not an “instanta-
neous” frequency vector at 7 but instead the frequency vector
of the window [#,7+T]. If T is not sufficiently long the fre-
quencies cannot be determined accurately enough for a reli-
able study of the diffusion. A typical time 7 for accurate
identification of frequencies ranges from 512 to 4052 itera-
tions of a map [24,25,27].

One may ask what happens if significant transitions in the
evolution of an orbit happen inside this window [z,7+T7].
This may be the case especially within systems far from
integrable, where a wildly chaotic sea is present, or within
time-dependent systems where orbits can move from regular
to chaotic and vice versa. Then frequency map analysis will
detect a change in the frequency vector of the orbit, but it
may not be able to pinpoint accurately exactly where transi-
tions from stickiness to wild chaos happen. Also, when the
whole evolution of a system is shorter than the typical value
of 512 iterations the frequency map analysis may not be able
to provide enough information about the diffusion of chaotic
orbits without sacrificing the accuracy of the frequency vec-
tor.

A second point is that although Laskar’s method can fol-
low the diffusion of an orbit in the frequency map, it cannot
(by design) provide a measure of chaos strength (or sticki-
ness) of the orbit. It may still be possible for such informa-
tion to be derived out of careful analysis of data, but it is not
one of the basic features of Laskar’s method. On the other
hand, the patterns method was designed with characteriza-
tion of chaos strength in mind. The patterns algorithm does
not involve any predetermined time-span, consequently it
has the advantage to pinpoint transitions in the evolution
accurately even when the evolution of the system is short
(how short it has to be will be carefully discussed throughout
this paper). The main result (irregularity per time) for every
orbit can be seen in Fig. 10 and will be discussed in Sec. V.

In Sec. II the models used for this paper are presented. In
the Sec. III there is a basic demonstration about the intricate
differences between regular and chaotic signals. In Sec. IV
the algorithm of the method is presented. In Sec. V the nu-
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merical experiments performed are elaborated. In Sec. VI
there is a discussion about the new measure.

II. MODELS

Four models were used for the simulations: Hénon-Heiles
potential [28], a potential of galactic type [13], the dihedral
potential [29], and the standard map [13]. Exhaustive experi-
ments were performed for the first one, and the rest were
used as additional examples to test the generality of the
method (pictures of the extra models are available in the
supplementary material online). All four models are both
well known; the main reason they were chosen was that they
admit significant numbers of both regular and chaotic orbits.

The Hénon-Heiles potential is given by

| 1
Vix,y) = 5(x2+y2) +yx’ - §y3~ (1)

For the numerical experiments, every orbit had total energy
E=0.125.
The potential of galactic type is given by

1
Vix,y) = E(w%xz + w%yz) — exy’. (2)

The choices of the parameters were w%: 1.6, w%=0.9,
e=4.45, and E=0.00765.
The dihedral potential is given by

1 1
V(x,y)=-(x*+y?) + Z(x2 +y?)? - szyz- 3)

The choice for the energy was E=10.0.
The equations of the standard map are

Xiy1 =Xi+ Vi1,

K
Yirl=Yit sin(27x;)(mod 1), (4)
2

where K was chosen to be equal to 5.0.

III. SIGNALS

In this section it will be shown how a signal can be ana-
lyzed effectively to provide information about its regularity
or chaos. It is both more straightforward and more pedagogi-
cal to proceed by examples.

Assume one integrates an initial condition in a potential
and records, say, the variable x(¢) throughout the evolution
(any other phase space variable could have been chosen).
Essentially, the recorded data comprise a signal. By visual
means only, it is often unclear whether the signal corre-
sponds to a regular or a chaotic orbit (Fig. 1). Still, intu-
itively one expects the information of regularity or chaoticity
to be encrypted inside the signal. Fourier analysis can deci-
pher this information on a global level, i.e., treating the sig-
nal as one entity, but the problem can also be approached
from a different point of view, to provide information on a
local level. The goal is to study what the real differences
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FIG. 1. The signals x(7) of two orbits integrated in the Hénon-
Heiles potential (E=0.125). One of these signals is regular and one
is chaotic, but visual inspection is not sufficient to secure a reliable
judgment.

between a regular and a chaotic signal are, and eventually
quantify them.

The first step is to find the extrema of the signal. Intu-
itively, if some regularity exists it should be reflected to, and
manifested through the extrema. Assume that the signal has
N extrema. Now, a question can be posed: What will happen
if one connects the extrema, m, m+k, m+2k, m+3k and so
on (in practice, the extrema that appear every k steps starting
with extremum m)? In general nothing happens. However, if
the signal corresponds to a regular orbit, and if an appropri-
ate step k is chosen, smooth mono-periodic, or multiplyperi-
odic, curves emerge. This should be obvious from Fig. 2. For
this example the step was k=8. Let us name this step “pat-
tern step” for reasons that will be clarified soon. One can
easily notice that there are eight smooth curves emerging
(they are as many as the pattern step). These curves have
obviously the same period. Hereafter this period will be
called “pattern period.” For this example the pattern period
was about 652 time units in physical time, the equivalent of
about 208 extrema.

The physical importance of pattern step and pattern period
can be visualized from the plots of orbit segments in con-
figuration space (Fig. 3). These segments show how the orbit
looks between some extremum m and the extremum m+k (k
is always the pattern step of the signal). From these pictures
one can see that the orbit “deposits” similar segments in the
configuration space every k extrema. Hereafter, these “de-
posits” will be called “patterns.” Although these patterns re-
semble each other, they are not the same, and they should not
be. What one can observe in this picture is that, as time
proceeds, the initial pattern oscillates. The successive panels
can be seen as consecutive frames of a movie. This is simply
a reflection of the oscillation of the smooth curve(s) emerg-
ing in the signal [Fig. 2(d)]. Eventually, after one pattern
period the pattern either almost repeats (when the orbit is
quasiperiodic), or exactly repeats (when the orbit is peri-
odic).

One may try to follow the same recipe for a chaotic sig-
nal. Alas, no matter what step is chosen, no curves emerge
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FIG. 2. (a) The signal x(r) of a regular orbit evolved in the
Hénon-Heiles potential (E=0.125). (b) The extrema of the signal
interposed on the signal. (c) Smooth periodic curves emerge when
the extrema of pattern step k=8 are connected. (d) The smooth
periodic curves alone. (e) One of the eight smooth curves alone; its
pattern period is 7,,=652 time units in physical time or about 208
extrema points.

which are smooth in the sense manifested in regular signals.
In the best case scenario, for chaotic signals one may find
occasional loose regularities, curves that attempt to mimic
smoothness to one extent or another (Fig. 4). Still, these
curves not only do not look as smooth as the ones of regular
orbits, but they are also localized in time, destined to cease to
exist sooner or later. For many chaotic orbits the smoothest
curves one can actually draw are simply the envelope curves
of the signal (Fig. 5).

In order to have a better understanding of how the signals
really behave, one can make plots of the extrema of orbits
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FIG. 3. Segments of the regular (quasiperiodic) orbit of Fig. 2 as
it evolves in configuration space. (a) Segment between extrema 0 to
8 in signal x(¢) (time t=[1.3,26.4]). (b) Segment between extrema
8 to 16 (time r=[26.4,51.5]). (c) Segment between extrema
16 to 24 (time t=[51.5,76.6]). (d) Segment between extrema 24 to
32 (time r=[76.6,101.7]). (¢) Segment between extrema 32 to 40
(time r=[101.7,126.8]). (f) Segment between extrema 40 to 48
(time r=[126.8,151.9]). (g) Segment between extrema 48 to 56
(time r=[151.9,177.0]). (h) Segment between extrema 208 to 216
(time r=[652.0,677.1]). This segment shows how the orbit looks
after a whole pattern period. It resembles, and has to be compared
with, segment (a). If the orbit was not quasiperiodic but periodic,
the patterns would be exactly the same.

integrated for very long times (Fig. 6). Then, it becomes
obvious that the extrema of periodic or quasiperiodic orbits
manifest some sort of regularity. This is because of the exis-
tence of underlying smooth curves. On the other hand the
extrema of chaotic orbits not only look irregular but also
reveal different epochs during the evolution of the orbit:
there are epochs which look completely disordered, while
others possess some loose regularity. Later, it will be dis-
cussed how loose regularities associate with stickiness.

IV. ALGORITHM

How can one take advantage of the underlying patterns in
a signal? Can one use these patterns to make a prediction
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FIG. 4. (a) The signal x(¢) of an chaotic orbit evolved in the
Hénon-Heiles potential (E=0.125). (b) The extrema of the signal
interposed on the signal. (c) A semismooth curve emerges when the
extrema points with pattern step k=12 are connected. (d) The
twelve semismooth curves alone.

about where extrema points should appear? If one can pre-
dict to a good extent where the position of an extremum
should be in a signal, then this predictability should be con-
sistent with, or equivalent to, regularity. On the other hand,
there should not be high predictability for extrema of chaotic
signals.

The description of the algorithm will be done first on a
local level, using an example, and then on a global, more
general level. To keep the right perspective, a very important
point has to be understood from the very beginning; the goal
of the algorithm is to search a signal locally, part by part, and
find the smoothest possible curve associated with every one
of these parts.

For a chaotic orbit different parts can associate with dif-
ferent smoothest curves, therefore with different pattern
steps. This is because a chaotic orbit is usually free to travel
in an extensive chaotic phase space and even get sticky
around different regular islands. On the other hand, for a
regular orbit all the parts are described by the same pattern
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FIG. 5. (a) The signal x(z) of a chaotic orbit evolved in the
Hénon-Heiles potential (E=0.125) and the extrema of the signal
interposed on the signal. (b) In practice, there is no correlation
between the extrema points; the smoothest curves one can find are
the ones for pattern step k=2, i.e., the envelope of the signal.

step; an underlying pattern simply repeats itself during evo-
lution (Fig. 2)

Let us examine the signal in Fig. 2 carefully. This ex-
ample is a regular orbit, but the analysis will be local, in one
part of the signal, so it is the same as for a chaotic orbit. The
pattern step for this specific signal is k=8. This is why eight
smooth curves emerge [Fig. 2(d)]. One can assign a number
i to every extremum of this signal; i=0,1,.... The first curve
comprises the extrema 0, 8, 16, 24,..., the second curve com-
prises the extrema 1, 9, 17, 25,..., and so on. The last (eight)
curve comprises the extrema 7,15,23,31,.... Allow us to now
enlarge the first part (r=[0,80]) of Fig. 2(d) to make the next
point clear (Fig. 7).

10000
time

15000 20000

FIG. 6. Signals of two different orbits evolved in the Hénon-
Heiles potential (E=0.125) for a very long time (20 000 time units
in physical time). The first signal belongs to a regular orbit; the
second one to a chaotic orbit. It is visually obvious that the chaotic
orbit experiences several different epochs in the phase space. The
parts that look more organized are very often associated with
stickiness.
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time

FIG. 7. The extrema and the smooth curves of the first three
patterns of the signal x(¢) shown in Fig. 2.

Assume that one knows that, for this specific part of this
specific orbit the smoothest possible curves emerge for pat-
tern step k=8. (In reality we do not know from the beginning
either the nature of the orbit or the pattern step, so we have to
search for all possible pattern steps). One also has available
the recorded values of x and ¢ at the extrema O and 16, and
the value of r at extremum 8. Now, to what extent is it pos-
sible to calculate the value of x at extremum 8?

The obvious next step is to use an interpolation scheme
and calculate a value Xiyerpolation at €Xtremum 8, using the
information from points 0 and 16. Assume one does that.
Since all three points, 0, 8, and 16 belong to a smooth
curve (which actually locally looks similar to a straight line)
the calculated Xjyerpolaion Value should be very close to
the real value x,,. Then, the relative interpolation o=|(x,ey
_xinterpolation) /-xrea]| can be Computed'

(If we had chosen a chaotic orbit, and if we examined a
part that was wildly chaotic, then the smoothest possible
curve to be found would not look smooth at all. Then the
relative interpolation error would be large. The same would
be true for regular or sticky parts of orbits when the chosen k
is not the one associated with the smoothest possible curve.
So the algorithm’s job is really to find the best possible k per
part.)

Are the interpolation errors for all the rest of the 7 curves
in Fig. 7 small? If there is regularity (locally) they should be.
We repeat the process for the set of the extrema 1, 9, 17; then
for the set 2, 10, 18, and so on (the last set of extrema to
investigate comprises of the extrema 7, 15, and 23). The
relative interpolation errors oy, for i=8,9,...,15, are calcu-
lated. In practice, the extrema in O to 7, and 16 to 23 are used
to calculate the positions of the extrema in 8 to 15.

Next, one has to find the biggest of all these interpolation
errors o;, i=8,9,...,15. Then this error is assigned to the
extrema points 0 to 23. (In practice, this means that one can
give a prediction of all the points in this pattern with accu-
racy smaller or equal to the biggest error). All these points
were involved in the interpolation and the interpolation er-
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rors of extrema [8,15] connect inherently to the regularity
associated with the extrema [0,7] and [16,23]. If the extrema
in these two patterns were chaotic then the errors calculated
for pattern [8,15] would be large, and vice versa.

The next step is to move to the next three patterns ([1,8],
[9,16], [17,24]). Remember, there are errors already assigned
to points [0,23]. One performs the same process as before,
but now before the maximum error is assigned to all in-
volved extrema points it has to be compared with the already
assigned values. If the new error for some extremum is
smaller than the one already assigned then the new value is
kept.

Now, the process described was only for step k=8, How-
ever we do not really know a priori which pattern step will
provide the smoothest curve locally. The algorithm simply
has to do a search for all possible pattern steps. For every
pattern step it assigns an interpolation error to every extre-
mum. The output is a N X M matrix, where N is the number
of extrema and M is the number of possible pattern steps. In
addition, the whole concept can be generalized easily to in-
terpolation orders bigger than two (for interpolation of n or-
der, n+1 patterns are involved in the calculations).

Let us now talk about the general structure of the algo-
rithm. The algorithm is comprised of the following steps. (a)
Define the interpolation order n. (Start with 2 and proceed to
12 with step 2.) (b) Define the pattern step k. (Start with 1
and proceed to the biggest possible pattern step. This biggest
possible pattern step depends on the order of interpolation n
and the number of extrema points N.) (c) Define the patterns
in the signal. How big the patterns are depends on the pattern
step. (In the previous example for interpolation order n=2,
and pattern step k=8, one will have n+1=3 patterns of 8
points each per part of the signal. The patterns will be [0,7],
[8,15], and [16,23]). (d) Find the maximum interpolation er-
rors per part as described earlier and assign them accord-
ingly. Then move to the next part (in our example the next
part will be the patterns [1,8], [9,16], and [17,24]). Find
again the maximum interpolation error, compare it with the
interpolation error already assigned to points [1,23] and if
smaller replace the previous one. Proceed to the next part
and so on. (e) Go to the next pattern step, and repeat the
process. (f) Go to the next interpolation order and repeat the
process.

After this process finishes 6 matrices of interpolation er-
rors have been recorded (for interpolation orders 2, 4, 6, 8,
10, and 12). These matrices have the same number of col-
umns (number of extrema) but different numbers of rows
(number of pattern steps). As the interpolation order in-
creases, bigger patterns are involved in every interpolation,
and the maximum possible pattern step accordingly de-
creases.

It is interesting to mention here that if the orbit is regular
a whole row (every row corresponds to a specific pattern
step) will have very small interpolation errors. This means
that, for some pattern step, smooth curves emerge and all the
extrema are very predictable. For chaotic orbits there are
isolated parts in the rows of the matrices with small interpo-
lation errors. These parts are associated with the sticky ep-
ochs of the orbits.

The last step is to search all these matrices and find the
minimum interpolation error for each extremum. This mini-
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mum interpolation error will be called “irregularity” hereaf-
ter. The smaller the irregularity the more regular the particu-
lar extremum. Eventually the algorithm produces a vector of
irregularities; one value of irregularity per extremum. Fi-
nally, the average and standard deviation of the vector of
irregularities has to be computed as an indicator of the global
behavior of the orbit.

A couple of final technical details. (a) A natural cubic
spline scheme was implemented [30]. A question arises as to
what the optimal order of interpolation should be. Interpola-
tion schemes may not work very well when too many points
are involved. For the experiments of this paper, interpolation
order 4 or 6 usually gave the best results. Occasionally order
8 was also successful, but orders bigger than that almost
never made the interpolation error smaller. Still, this algo-
rithm used interpolations for all orders 2, 4, 6, 8, 10, and 12
just to assure best results. (b) It is better to use the absolute
values of the extrema points. This way the algorithm takes
advantage of symmetries in the signal, something that may
be important when the integration time is limited, because it
may characterize an orbit faster. (c) There are only two ex-
ceptions in the whole concept of computing interpolation
errors: pattern steps 1 and 2. For pattern steps 3 or higher
there are three or more curves involved in the computation of
errors. In order for a pattern to look regular all these three
curves should look smooth. The chance for three curves to
accidentally look regular if the signal is not really regular is
minimal. However, when the pattern steps are equal to 1 or
2, only one or two curves are involved. Accidentally, they
may look smooth but have something to do with real regu-
larity. Basically the statistics involved is not very good in
these cases. The way one can avoid such accidents is not to
allow small orders of interpolation for these particular pat-
tern steps. For pattern step 1, orders 8 or bigger were al-
lowed. For pattern step 2 orders 6 or bigger. This strict ex-
ception makes sure that although there are not many curves
engaged, at least in the one or two used there are enough
points involved.

V. EXPERIMENTS

Most of the numerical experiments were performed using
the Hénon-Heiles potential. Two extra flows derived from (a)
a potential of galactic type and (b) the dihedral potential,
were used as additional models to demonstrate the generality
of the method. The energies and parameters for all three
flows were chosen to admit a significant number of both
regular and chaotic orbits.

The Hénon-Heiles potential has been broadly used in the
context of chaotic dynamics and astrophysics. The number of
chaotic orbits it admits depends on the choice of the energy.
When the energy is small there are no or few chaotic orbits.
As the energy increases, the number of chaotic orbits in-
creases and eventually dominates. The choice of the energy
for the numerical experiments performed in this paper was
E=0.125. For this energy about fifty percent of a random set
of initial conditions evolve into regular orbits; the other fifty
percent into chaotic.

Two sets of initial conditions were generated, each to be
used for different reasons. The first one was comprised of
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FIG. 8. The distribution of the average irregularities of 1000
orbits integrated in the Hénon-Heiles potential (E=0.125).

1000 initial conditions. These initial conditions were inte-
grated for 1000 time units (in physical time). This is equiva-
lent to about 150 revolutions (revolution=dynamical time
=orbital period) of each orbit, or about 300 extrema points
per orbit. In practice, every two extrema points are equiva-
lent to one dynamical time. The second set was comprised of
20 000 orbits integrated for 2000 time units in physical time,
or about 300 dynamical times.

The typical process of recording the data of a Poincaré
section was followed. To find the extrema of signal x(z) one
can simply record the data when they cross the surface
v,=0.

The aforementioned algorithm was applied to the orbits
generated by these integrations. Irregularity was used to
characterize the orbits locally at each extremum. The average
irregularity was used to characterize them globally, in prac-
tice to distinguish them as regular or chaotic. In general, the
difference of the average irregularity between regular and
chaotic orbits is at least 1 order of magnitude, and most
commonly 4 to 5 orders of magnitude; the distinction is usu-
ally clear.

There are two kinds of interesting ways to plot phase
spaces using the new information. Both can be useful and are
worth presenting.

A. Poincaré plots

The following demonstration refers to experiments per-
formed on the set of 1000 orbits integrated for 1000 time
units in the Hénon-Heiles potential with energy E=0.125.
The distribution of the average irregularities of the integrated
orbits was computed (Fig. 8). One can observe a sizable peak
at the beginning of the x axis: regular orbits are characterized
by very small average irregularities. On the other hand cha-
otic orbits have bigger average irregularities: their distribu-
tion disperses to a much broader area. One can distinguish
where the chaotic part of the distribution starts. This distinc-
tion can establish a criterion, hereafter called “regularity
threshold.” Orbits with average irregularity smaller than the
regularity threshold will be characterized regular, otherwise
they will be characterized chaotic. For the particular set of
orbits the regularity threshold is located at (irregularity)
=0.007. Obviously this choice is not extremely sensitive: if it
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FIG. 9. (Color online) Plot of the surface section of the Hénon-
Heiles potential (E=0.125). Blue (dark gray) points signify regular-
ity, red (gray) points wildly chaotic epochs of chaotic orbits, and
green (light gray) points sticky epochs of chaotic orbits. The regu-
larity threshold was 0.007. Two different levels for the stickiness
criterion are shown. (a) stickiness criterion=0.035. (b) stickiness
criterion=0.065.

was slightly bigger or smaller, only a very small number of
orbits would be classified incorrectly. Such regularity versus
chaos criteria are numerical necessities for other measures,
too. For example when the integration time is not extremely
long the largest Lyapunov exponent has not converged to
zero yet, but instead to a value close to zero and one needs to
establish a regularity threshold in that case too. The longer
the evolution the more distinct the threshold becomes, and
the same is true for the irregularity.

One can now make a plot of the phase space (Fig. 9). In
this plot all points of the orbits with average irregularity less
than 0.007 are considered regular and are plotted in blue. For
the chaotic orbits an additional criterion has to be defined to
distinguish between sticky and wildly chaotic epochs (here-
after this will be called “stickiness criterion”). However, this
criterion cannot have the same nature as the regularity
threshold. The reason is that there is a continuum associated
with stickiness: stickiness tends to be stronger closer to the
regular islands, and weakens as the distance from them in-
creases. Sticky zones grow but they get weaker, destined to
eventually intrude and disappear into the wildly chaotic re-
gion. Therefore, conceptually, a stickiness criterion should be
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FIG. 10. (Color online). Top panel: signal of a chaotic orbit
evolved in the Hénon-Heiles potential (E=0.125). The green (light
gray) regions signify sticky epochs, while the red (dark gray) wildly
chaotic epochs. Middle panel: the irregularity of the orbit versus
time. The stickiness criterion (dashed line) has been chosen arbi-
trarily for demonstration reasons. Bottom panel: Poincaré section of
the orbit.

able to show how the strength of sticky areas decreases as
they grow in size, and not to distinguish sharply between
sticky and wildly chaotic regions. The bigger the stickiness
criterion, the broader the sticky regions are. By altering this
criterion one can have pictures of how the extent of the
sticky zones alters, too.

In Fig. 9 two different stickiness criteria were chosen. The
sticky points were colored as green and the wildly chaotic
red. As the stickiness criterion increases the size of the sticky
zones increases too.

At this point it is important to show a simple example
about what really happens as a chaotic orbit evolves (Fig.
10). A chaotic orbit was integrated for a very long time
(20 000 time units). This orbit was chosen to be sticky in its
early stages. During its evolution the orbit alternated from
sticky to wildly chaotic several times. These changes are
manifested in its signal, and in the calculated irregularity.
When the signal looks chaotic the orbit is located inside the
chaotic sea and the irregularity is bigger. For demonstration
reasons only, an arbitrary stickiness criterion was chosen. In
the phase space plot one can see that the method is sensible:
the green points are obviously located in sticky regions,
mainly around the regular islands. It is important to notice
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FIG. 11. Stickiness time of chaotic orbits versus irregularity in
the Hénon-Heiles potential (E=0.125). Four different epochs (1 to
4) with different slopes have been identified for the chaotic orbits.
(Epoch 0 pertains to regular orbits.)

that the patterns method can detect accurately transitions that
happen for in very short time spans.

It is well known that the phenomenon of stickiness fol-
lows a diffusion process [31-33]. For stickiness regions
around regular islands, the larger the distance from the regu-
lar island the shorter the stickiness time spent by an orbit.
Irregularity should increase as the distance of an orbit from
regular regions increases. Then one may try to uncover a
diffusion law by performing a simple experiment. The ex-
trema of about 10 000 chaotic orbits integrated in the Hénon-
Heiles potential were analyzed to find the (stickiness) time
they spent in different irregularity levels. This should be
equivalent to the integration of one chaotic orbit for an ex-
tremely long time, since that orbit will cover densely all the
phase space energetically available to it. In Fig. 11 one can
see that the plot is divided in five different zones. Zone 0
belongs to regular orbits and is irrelevant. It extends from 0.0
to the regularity threshold 0.007. For irregularities just big-
ger than 0.007 the stickiness time is very large (zone 1).
Stickiness is stronger close to the regular islands were the
irregularity should be very small, almost comparable to the
one of regular orbits. The stickiness time becomes smaller in
zone 2 and even smaller in zone 3: these three zones are
characterized by different slopes hinting about different
properties associated with stickiness. Eventually, in zone 4
diffusion completely disappears and is replaced by a com-
pletely chaotic regime.

The four zones 1, 2, 3, and 4 were plotted in the phase
space (Fig. 12) with different colors to show to what regions
of the phase space they correspond. Zones 1 and 2 are plotted
as green, zone 3 as red, and zone 4 as black. The existence of
different zones provides quantitative information about how
the chaotic sea is actually divided into areas of different
properties. This information could potentially be used to es-
tablish a rigid criterion for the boundaries of important parts
of the chaotic regions.
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FIG. 12. (Color online). Phase space based on the diffusion
information in the Hénon-Heiles potential (E=0.125). Yellow (very
light gray) corresponds to Zone 0, green (light gray) signifies Zones
1 and 2, red (dark gray) signifies Zone 3 and black signifies Zone 4.

B. Contour plots

There is a second approach which can provide extremely
detailed pictures of the phase space, without having to make
any choice of criteria or threshold values. Since patterns
method has the advantage of assigning one irregularity value
to every extremum of a signal associated with an orbit, one
can simply bin the data, and create a contour plot of the
phase space. In order for the contour plot to be intricately
detailed, 20 000 orbits were integrated for 2000 time units
(physical time). Then the data were binned in a 256 X 256
grid. The result can be seen in Fig. 13.

Because the irregularities of typical regular and chaotic
orbits differ by orders of magnitude, it is a good idea to use
two plots to provide enough contour levels to show all the
details of the physics involved in the phase space: one em-
phasizing the chaotic sea and one emphasizing the regular
regions. In the plot of the chaotic sea the regular areas are
green or gray (very low irregularity), and obviously very
distinct. The chaotic regions start from very deep purple
(very sticky) and they evolve to yellow, which signifies very
large irregularity and wild chaos. Obviously, this graph pro-
vides a very rich information about the structure of the cha-
otic phase space. For example it can even detect the thin
stickiness zones passing between the big islands; for smaller
energies separatrices used to exist at those zones.

The plot of the regular areas clearly manifests that there
are degrees of regularity. Full research on these degrees will
be presented in a future paper, but for now it suffices to say
that the new measure will probably be able to uncover inter-
esting physical information related to the regular regions,
too.

Similar experiments were performed for the a potential of
galactic type and the dihedral potential. See Ref. [34] for the
detailed structure of the phase space of the galactic potential
(first supplement) and for the structure of the phase space of
the dihedral potential (second supplement).

Finally, the same experiment was performed for the stan-
dard map. A word of caution is necessary here; the standard
map involves moduli in its equations. This causes disconti-
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nuities which, for small values of K, are manifested in the
existence of broken tori at the edges of the phase space. Such
discontinuities do not appear or make sense in usual flows.
Exactly because of these discontinuities there are orbits for
which the algorithm does not function properly. This hap-
pens because some of the smooth curves are replaced by step
functions. This is a point that is worthy of future research.
Still the algorithm can characterize correctly significant parts
of the phase space even for small K. It can be applied almost
safely for choices of K where broken tori do not exist at the
edge of the phase space. The result for K=5 can be seen in
the supplementary material. Again there is a rich structure
revealed in the phase space. See Ref. [34] for the detailed
structure of the phase space of the standard map (third
supplement).

C. Short-time evolution

One may ask what happens when the available evolution
time of a system is extremely limited. This method can iden-
tify regularity after three patterns have been formed. If the
evolution time of the system is shorter than that, the algo-
rithm will fail. The question emerging is, does a significant
number of regular orbits form three patterns early in their
evolution?

To answer this question one has to show how the phase
space looks as the evolution time decreases. In Fig. 14 one
can see the distributions of average irregularity, the phase
space plots and the contours for evolution times equal to 200
(about 30 dynamical times), 100 (about 15 dynamical times),
and 70 (about 10 dynamical times). The regularity versus
irregularity threshold has been defined by the distribution
plots. As is obvious, determining this threshold accurately
becomes more and more difficult/arbitrary as the evolution
time decreases. For the last series of panels (10 dynamical
times) the choice is obviously highly arbitrary. However, the
pictures of the contours do not involve any arbitrary choices
of parameters, can be considered more objective, and suc-
ceed to show where the system is more regular and where
irregularity increases.

It is clear from these plots that the algorithm works quite
well for 30 dynamical times. For 15 dynamical times the
picture is still clear although small regular islands cannot be
identified any more. Even for 10 dynamical times the pic-
tures still provide enough information in the sense that it
clearly identifies many important regions of regularity.

VI. DISCUSSION

The strongest point of the new measure is that it can iden-
tify epochal regularity and assign a local chaos strength. This
is a significant advantage over other measures, in the sense
that a chaotic orbit is usually neither globally sticky, nor
globally wildly chaotic; instead it can experience both be-
haviors throughout its evolution. The new measure can iden-
tify and distinguish between different evolutionary epochs
and quantify them accordingly.

There are two limitations inherent in this method. (a) Or-
bits can be quantified correctly only when their integration
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FIG. 13. (Color online). Contour plot of the phase space of
Hénon-Heiles potential (E=0.125). In the top panel emphasis is
given to the chaotic region. The regular regions are easily distin-
guishable as green (very light gray) or light gray. Sticky regions
have bigger irregularities than regular, and appear as deep purple
(very dark gray). As irregularity increases the chaotic regions be-
come lighter purple and for very irregular regions they become
yellow (in the grayscale version this can be seen as different shades
of gray inside the chaotic sea; deeper gray shades correspond to
bigger stickiness). In the bottom panel emphasis is given to the
regular areas. Irregularity is different in different

time is at least three times their pattern step. In other words,
they must have formed at least three patterns. As the integra-
tion time decreases the method fails for more and more or-
bits. (b) A small number of chaotic orbits start and stay ex-
tremely sticky during their evolution. These orbits mimic
regular orbits quite persuasively. Fortunately their number in
a typical random set of orbits is usually very small. The
patterns method will probably characterize these orbits as
regular.

There is no absolute remedy for the first problem. If an
orbit has not been evolved long enough to form at least three
patterns, the algorithm does not have enough information to
quantify it correctly. It is true, though, that at least for the
Hénon-Heiles case the big majority of orbits formed three
patterns over a small number of dynamical times. It is worth
mentioning here that the standard deviation of the irregulari-
ties of the extrema of regular orbits is very small. This is
because regular orbits do not experience tremendous changes
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FIG. 14. (Color online). Distributions of average irregularity, Poincaré sections, and contour plots of the phase space of the Hénon-Heiles
potential (E=0.125) for short evolution times. Top panels: evolution time=200 (equivalent to about 30 dynamical times). Middle panels:
evolution time=100 (equivalent to about 15 dynamical times). Bottom panels: evolution time=70 (equivalent to about 10 dynamical times).

in irregularities as chaotic orbits do. This may end up being
an additional criterion of regularity versus chaoticity, one
that could provide some sort of characterization information
even for extremely short times. Future research will carefully
address this possibility.

One may ask how the average irregularity converges in
time. This is shown in Fig. 15 for typical regular, and typical
chaotic orbits in the Hénon-Heiles potential. In this plot one
can see that the average irregularities of regular orbits con-
verge very fast. On the other hand, it takes much longer for
the average irregularities of chaotic orbits to converge. This
happens because the phase space energetically available to
chaotic orbits is typically bigger than the one available to
regular orbits; it is not constrained by the existence of local
integrals. A second important point is that the chaotic curves
stay away from zero. Occasionally at some point of the evo-
lution they may approach zero (which reflects sticky epochs),
but not as close as regular orbits do. The earlier a sticky
epoch happens, the closer the curve will approach zero.
Eventually, chaotic orbits converge to values distinctly far
from zero. It is interesting that if allowed to evolve for long

enough, different chaotic orbits seem to converge slowly to
similar values. This is not a surprise: the longer chaotic or-
bits are allowed to evolve, the denser they cover the phase
space energetically available to them, unavoidably experi-
encing similar epochs, thus ending up converging to a similar
average irregularity. In practice, they all result in having the
same statistical properties.

One should not expect the average irregularity to have a
linear relationship with any of the existing measures that
characterize an orbit globally. The design and logic of the
patterns algorithm focuses on local characterization of orbits.
There is no reason that an average of these characterizations
should correlate linearly with measures designed to provide
global characterization. The relationship between irregularity
and local instability during the evolution of a chaotic orbit is
not clear.

On the other hand, one should expect this method to agree
with the established measures on the distinction between
regularity and chaos. The plots already presented strongly
suggest that this is true. Specifically, the characterization of
orbits (as regular or chaotic) computed by the new method
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FIG. 15. (a), (b), and (c): Convergence of the
average irregularity for three typical regular or-
bits in the Hénon-Heiles potential (E=0.125).
(d), (e), and (f): Convergence of average irregu-
larity for three typical chaotic orbits in the same

4 potential (notice that the time scale is different
from the top three panels). (g) The curves of typi-
cal chaotic orbits (dashed lines) are located

higher than the curves of regular ones (solid
lines). (f) Same as (g) but for longer evolution.
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for the 1000 orbits, which evolved in Hénon-Heiles for about
150 dynamical times, agreed up to almost 99% with the char-
acterization provided by the computation of their largest
Lyapunov exponents. If one uses the extra information from
the standard deviation of irregularity (which has to be small
for regular orbits) this percentage ascends to almost 100%,
failing only in extremely pathological cases. Longer evolu-
tion always increases the percentage of success.

Since the logic of this measure is based on local identifi-
cation of irregularity, it can be used directly in time-
dependent potentials. A whole treatment of this idea will be
presented soon in a follow-up paper, but the whole theme is
very important in the sense that it provides a way of identi-
fication of regularity versus chaos in time-dependent sys-
tems.

It is extremely important that this measure should be able
to work equally well for orbits that have been integrated in
smooth potentials, N-body systems, or in any physical sys-
tem in general (with the exception of artificial systems with
inherent discontinuities). This happens because it searches
for regularity in signals. There are many different contexts in
physics and industry where the only information about a sys-
tem is data associated with the measurement of a variable, in
practice a signal. Then, one can use this algorithm to analyze
it. Therefore, the whole idea can potentially extend to a much
wider spectrum of contexts, essentially wherever one needs
to make a judgment about epochal regularities or irregulari-
ties of a signal.

It has to be mentioned that this algorithm is very effective.
Although it is an O(N?) algorithm, N is the number of ex-
trema of the signal, and therefore often small. However,
there are contexts for which it may be large. Then the best
idea would be to divide orbits in relatively big pieces, and
then analyze these pieces.

Concerning future plans there is additional physics asso-
ciated with the existence of underlying smooth curves and
patterns. This physics deserves a thorough investigation,
which the author plans to perform and present in a future
paper. In this paper the main goal was to introduce the idea
and to present an algorithmic approach of how to take ad-
vantage of it. Also, it has to be shown how the patterns
method applies to systems with more that two degrees of
freedom. The treatment of the one-dimensional signals of
multidimensional systems should be the same as in two di-
mensions; still a careful analysis is necessary to demonstrate
that there are no problems arising. Finally how this method
applies to time-dependent systems is a question of major
interest, and a future paper will carefully address it.
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